This site uses cookies only for the purpose of identifying user sessions.
This is required to properly register actions.
Minimum DFA for $\{ w \in \{a,b\}^* \mid \forall x,y,z: ( (w=xyz \wedge |y|=3) \Rightarrow (|y|_a\in\dot{2} \vee |y|_b\notin\dot{2}) ) \}$
Describe the minimum DFA that recognizes the language of the words over $\{a,b\}$
whose subwords of length $3$ have an even number of $a$’s or an odd number of
$b$’s.
Authors: Guillem Godoy
/
Documentation: