
Basic format for describing operations

Abstract
This document describes the syntax for three different judges. The first one is

a judge that allows to construct regular languages by means of regularity-preserving
operations applied on automata. The second one extends the previous judge by allowing
also the introduction of context-free grammars, thus being able to define context-free
languages. The third one is focused on reducing undecidable problems on context-free
grammars.

1 Regular languages
Before formally detailing the format we introduce an illustrative example. The program

main {
a = "a";
b = "b";
ab = a | b;
even_a = " a b

q0 q1 q0 +
q1 q0 q1 ";

output ab* a ab ab & even_a;
}

defines a variable a whose language is {a}, a variable b whose language is {b}, a variable ab
whose language is the union of the two previous variables, i.e., {a, b}, and a variable even_a
that is assigned an automaton recognizing the language {w ∈ {a, b}∗ | |w|a ∈ 2̇}. Finally, it
outputs the language obtained by: the Kleene’s closure of the variable ab, concatenated with
the variable a, concatenated twice with the variable ab, and everything intersected with the
variable even_a, i.e., the output is {w1aw2 | w1, w2 ∈ {a, b}∗ ∧ |w2| = 2 ∧ |w1aw2|a ∈ 2̇}.

Now we precise the syntax of the programs. In order to describe a regular language it
suffices to write a program of the following form:

main {
<ident1> = <expr1>;
...

<identN> = <exprN>;
output <expr>;

}

where the <ident1>, . . . , <identN> are variable identifiers, and the <expr1>, . . . , <exprN>,
<expr> are expressions over regular languages using operators that preserve the regularity.
More concretely, a basic expression is one of the following:

• A variable identifier (see IDENTIFIER below).

• A word (representing the language that contains exactly that word; see WORD below).

• A deterministic finite automaton (representing its recognized language; see DFA below).

Expressions can be combined using the following regularity-preserving operators:

• Language intersection, denoted by the binary operator &.

• Language union, denoted by the binary operator |.

• Language subtraction, denoted by the binary operator -.

1

• Language concatenation, a binary operation denoted without any symbol.

• Kleene’s closure of the language, denoted by the unary postfix operator *.

• Language reverse, denoted by the function reverse(...).

• Language substitution, denoted by the function substitution(...). This function
has as a first parameter the expression defining the language where the substitution
must be performed. The actual substitution is defined by the following parameters,
each being of the form WORD -> expr, denoting that the image of the terminal symbol
WORD is the language defined by the expression expr (the WORD must have one single
symbol).

As another example, the following two programs define the language of words over the
alphabet {a, b} having the subword abbba:

main {
output ("a"|"b")* "abbba" ("a"|"b")*;

}

main {
// automaton recognizing words with at least one 'x'
aux = " a b x

ini ini ini acc
acc acc acc acc + ";

output substitution(aux, "x" -> "abbba");
}

As a final remark, we provide the grammar describing the syntax of the programs:
program: 'main' '{' instruction* '}'

instruction: IDENTIFIER '=' expr ';'
| 'output' expr ';'

expr: subtraction (('|'|'&') subtraction)*

subtraction: concatenation ('-' concatenation)*

concatenation: starred starred*

starred: basic ('*' |)

basic: IDENTIFIER
| WORD
| DFA
| '(' expr ')'
| 'reverse' '(' expr ')'
| 'substitution' '(' expr (',' WORD '->' expr)* ')'

where:

• IDENTIFIER is a string over alphanumeric characters and underscore,

• WORD is a string delimited by quotation marks " and composed over lower-case letters,
digits, and the special characters +-*/()[]><, and

• DFA is a string delimited by quotation marks " that describes a deterministic finite
automaton.

2

2 Context-free languages
This format extends the previous one by adding the option to have context-free grammars
as basic literals. More precisely, basic can also be a token CFG, that is, a string delimited
by quotation marks " that describes a context-free grammar. For example, the program:

main {
g = "S -> aSa | bSb | a | b |";
output g - ("a"|"b")* "abbba" ("a"|"b")*;

}

outputs the language of palindromes over {a, b} that do not contain the subword abbba.
Recall that context-free languages are not closed under intersection or complementation.

Thus, an expression like op1 & op2 is invalid when op1 and op2 are both context-free
languages, and an expression like op1 - op2 is invalid when op2 is a context-free language.
Due to technical reasons, we do not allow the empty word in the image of a symbol under
a substitution when context-free languages are involved.

3 Reductions of grammars
Wemodify the previous programming language in order to allow reductions from undecidable
problems on CFG, such as universality or non-empty intersection. To this end, we have the
following redefinitions of program and instruction:

program: 'input' IDENTIFIER (',' IDENTIFIER)* instruction_list

instruction_list: '{' instruction* '}'

instruction: instruction_list
| IDENTIFIER '=' expr ';'
| 'if' '(' WORD 'belongsto' expr ')' instruction
('else' instruction |)

| 'output' expr (',' expr)* ';'

Note that the program receives input in the form of input variables, multiple output is
permitted, and conditional execution is allowed by checking word membership to a language.

For example, to prove undecidability of the equivalence problem between two CFGs over
{a, b} we can perform a reduction from the undecidable problem of universality on CFGs,
i.e., {G | L(G) = {a, b}∗} ≤ {〈G1, G2〉 | L(G1) = L(G2)}. The program to compute
such reduction receives as input a single grammar G, and outputs two grammars G1 and
G2 satisfying that L(G) = {a, b}∗ if and only if L(G1) = L(G2). The following program
performs such reduction:

input g {
output ("a"|"b")* , g;

}

Note that the program outputs two grammars, the first one generates {a, b}∗ and the second
one is precisely the input grammar g.

3

